3.2103 \(\int \frac{(a+b x) (a^2+2 a b x+b^2 x^2)^{3/2}}{\sqrt{d+e x}} \, dx\)

Optimal. Leaf size=262 \[ \frac{2 b^4 \sqrt{a^2+2 a b x+b^2 x^2} (d+e x)^{9/2}}{9 e^5 (a+b x)}-\frac{8 b^3 \sqrt{a^2+2 a b x+b^2 x^2} (d+e x)^{7/2} (b d-a e)}{7 e^5 (a+b x)}+\frac{12 b^2 \sqrt{a^2+2 a b x+b^2 x^2} (d+e x)^{5/2} (b d-a e)^2}{5 e^5 (a+b x)}-\frac{8 b \sqrt{a^2+2 a b x+b^2 x^2} (d+e x)^{3/2} (b d-a e)^3}{3 e^5 (a+b x)}+\frac{2 \sqrt{a^2+2 a b x+b^2 x^2} \sqrt{d+e x} (b d-a e)^4}{e^5 (a+b x)} \]

[Out]

(2*(b*d - a*e)^4*Sqrt[d + e*x]*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(e^5*(a + b*x)) - (8*b*(b*d - a*e)^3*(d + e*x)^(
3/2)*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(3*e^5*(a + b*x)) + (12*b^2*(b*d - a*e)^2*(d + e*x)^(5/2)*Sqrt[a^2 + 2*a*b
*x + b^2*x^2])/(5*e^5*(a + b*x)) - (8*b^3*(b*d - a*e)*(d + e*x)^(7/2)*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(7*e^5*(a
 + b*x)) + (2*b^4*(d + e*x)^(9/2)*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(9*e^5*(a + b*x))

________________________________________________________________________________________

Rubi [A]  time = 0.101148, antiderivative size = 262, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 35, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.086, Rules used = {770, 21, 43} \[ \frac{2 b^4 \sqrt{a^2+2 a b x+b^2 x^2} (d+e x)^{9/2}}{9 e^5 (a+b x)}-\frac{8 b^3 \sqrt{a^2+2 a b x+b^2 x^2} (d+e x)^{7/2} (b d-a e)}{7 e^5 (a+b x)}+\frac{12 b^2 \sqrt{a^2+2 a b x+b^2 x^2} (d+e x)^{5/2} (b d-a e)^2}{5 e^5 (a+b x)}-\frac{8 b \sqrt{a^2+2 a b x+b^2 x^2} (d+e x)^{3/2} (b d-a e)^3}{3 e^5 (a+b x)}+\frac{2 \sqrt{a^2+2 a b x+b^2 x^2} \sqrt{d+e x} (b d-a e)^4}{e^5 (a+b x)} \]

Antiderivative was successfully verified.

[In]

Int[((a + b*x)*(a^2 + 2*a*b*x + b^2*x^2)^(3/2))/Sqrt[d + e*x],x]

[Out]

(2*(b*d - a*e)^4*Sqrt[d + e*x]*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(e^5*(a + b*x)) - (8*b*(b*d - a*e)^3*(d + e*x)^(
3/2)*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(3*e^5*(a + b*x)) + (12*b^2*(b*d - a*e)^2*(d + e*x)^(5/2)*Sqrt[a^2 + 2*a*b
*x + b^2*x^2])/(5*e^5*(a + b*x)) - (8*b^3*(b*d - a*e)*(d + e*x)^(7/2)*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(7*e^5*(a
 + b*x)) + (2*b^4*(d + e*x)^(9/2)*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(9*e^5*(a + b*x))

Rule 770

Int[((d_.) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dis
t[(a + b*x + c*x^2)^FracPart[p]/(c^IntPart[p]*(b/2 + c*x)^(2*FracPart[p])), Int[(d + e*x)^m*(f + g*x)*(b/2 + c
*x)^(2*p), x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && EqQ[b^2 - 4*a*c, 0]

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rubi steps

\begin{align*} \int \frac{(a+b x) \left (a^2+2 a b x+b^2 x^2\right )^{3/2}}{\sqrt{d+e x}} \, dx &=\frac{\sqrt{a^2+2 a b x+b^2 x^2} \int \frac{(a+b x) \left (a b+b^2 x\right )^3}{\sqrt{d+e x}} \, dx}{b^2 \left (a b+b^2 x\right )}\\ &=\frac{\left (b \sqrt{a^2+2 a b x+b^2 x^2}\right ) \int \frac{(a+b x)^4}{\sqrt{d+e x}} \, dx}{a b+b^2 x}\\ &=\frac{\left (b \sqrt{a^2+2 a b x+b^2 x^2}\right ) \int \left (\frac{(-b d+a e)^4}{e^4 \sqrt{d+e x}}-\frac{4 b (b d-a e)^3 \sqrt{d+e x}}{e^4}+\frac{6 b^2 (b d-a e)^2 (d+e x)^{3/2}}{e^4}-\frac{4 b^3 (b d-a e) (d+e x)^{5/2}}{e^4}+\frac{b^4 (d+e x)^{7/2}}{e^4}\right ) \, dx}{a b+b^2 x}\\ &=\frac{2 (b d-a e)^4 \sqrt{d+e x} \sqrt{a^2+2 a b x+b^2 x^2}}{e^5 (a+b x)}-\frac{8 b (b d-a e)^3 (d+e x)^{3/2} \sqrt{a^2+2 a b x+b^2 x^2}}{3 e^5 (a+b x)}+\frac{12 b^2 (b d-a e)^2 (d+e x)^{5/2} \sqrt{a^2+2 a b x+b^2 x^2}}{5 e^5 (a+b x)}-\frac{8 b^3 (b d-a e) (d+e x)^{7/2} \sqrt{a^2+2 a b x+b^2 x^2}}{7 e^5 (a+b x)}+\frac{2 b^4 (d+e x)^{9/2} \sqrt{a^2+2 a b x+b^2 x^2}}{9 e^5 (a+b x)}\\ \end{align*}

Mathematica [A]  time = 0.102733, size = 171, normalized size = 0.65 \[ \frac{2 \sqrt{(a+b x)^2} \sqrt{d+e x} \left (126 a^2 b^2 e^2 \left (8 d^2-4 d e x+3 e^2 x^2\right )+420 a^3 b e^3 (e x-2 d)+315 a^4 e^4+36 a b^3 e \left (8 d^2 e x-16 d^3-6 d e^2 x^2+5 e^3 x^3\right )+b^4 \left (48 d^2 e^2 x^2-64 d^3 e x+128 d^4-40 d e^3 x^3+35 e^4 x^4\right )\right )}{315 e^5 (a+b x)} \]

Antiderivative was successfully verified.

[In]

Integrate[((a + b*x)*(a^2 + 2*a*b*x + b^2*x^2)^(3/2))/Sqrt[d + e*x],x]

[Out]

(2*Sqrt[(a + b*x)^2]*Sqrt[d + e*x]*(315*a^4*e^4 + 420*a^3*b*e^3*(-2*d + e*x) + 126*a^2*b^2*e^2*(8*d^2 - 4*d*e*
x + 3*e^2*x^2) + 36*a*b^3*e*(-16*d^3 + 8*d^2*e*x - 6*d*e^2*x^2 + 5*e^3*x^3) + b^4*(128*d^4 - 64*d^3*e*x + 48*d
^2*e^2*x^2 - 40*d*e^3*x^3 + 35*e^4*x^4)))/(315*e^5*(a + b*x))

________________________________________________________________________________________

Maple [A]  time = 0.007, size = 202, normalized size = 0.8 \begin{align*}{\frac{70\,{x}^{4}{b}^{4}{e}^{4}+360\,{x}^{3}a{b}^{3}{e}^{4}-80\,{x}^{3}{b}^{4}d{e}^{3}+756\,{x}^{2}{a}^{2}{b}^{2}{e}^{4}-432\,{x}^{2}a{b}^{3}d{e}^{3}+96\,{x}^{2}{b}^{4}{d}^{2}{e}^{2}+840\,x{a}^{3}b{e}^{4}-1008\,x{a}^{2}{b}^{2}d{e}^{3}+576\,xa{b}^{3}{d}^{2}{e}^{2}-128\,x{b}^{4}{d}^{3}e+630\,{a}^{4}{e}^{4}-1680\,d{e}^{3}{a}^{3}b+2016\,{a}^{2}{b}^{2}{d}^{2}{e}^{2}-1152\,a{b}^{3}{d}^{3}e+256\,{b}^{4}{d}^{4}}{315\, \left ( bx+a \right ) ^{3}{e}^{5}}\sqrt{ex+d} \left ( \left ( bx+a \right ) ^{2} \right ) ^{{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x+a)*(b^2*x^2+2*a*b*x+a^2)^(3/2)/(e*x+d)^(1/2),x)

[Out]

2/315*(e*x+d)^(1/2)*(35*b^4*e^4*x^4+180*a*b^3*e^4*x^3-40*b^4*d*e^3*x^3+378*a^2*b^2*e^4*x^2-216*a*b^3*d*e^3*x^2
+48*b^4*d^2*e^2*x^2+420*a^3*b*e^4*x-504*a^2*b^2*d*e^3*x+288*a*b^3*d^2*e^2*x-64*b^4*d^3*e*x+315*a^4*e^4-840*a^3
*b*d*e^3+1008*a^2*b^2*d^2*e^2-576*a*b^3*d^3*e+128*b^4*d^4)*((b*x+a)^2)^(3/2)/e^5/(b*x+a)^3

________________________________________________________________________________________

Maxima [B]  time = 1.14919, size = 516, normalized size = 1.97 \begin{align*} \frac{2 \,{\left (5 \, b^{3} e^{4} x^{4} - 16 \, b^{3} d^{4} + 56 \, a b^{2} d^{3} e - 70 \, a^{2} b d^{2} e^{2} + 35 \, a^{3} d e^{3} -{\left (b^{3} d e^{3} - 21 \, a b^{2} e^{4}\right )} x^{3} +{\left (2 \, b^{3} d^{2} e^{2} - 7 \, a b^{2} d e^{3} + 35 \, a^{2} b e^{4}\right )} x^{2} -{\left (8 \, b^{3} d^{3} e - 28 \, a b^{2} d^{2} e^{2} + 35 \, a^{2} b d e^{3} - 35 \, a^{3} e^{4}\right )} x\right )} a}{35 \, \sqrt{e x + d} e^{4}} + \frac{2 \,{\left (35 \, b^{3} e^{5} x^{5} + 128 \, b^{3} d^{5} - 432 \, a b^{2} d^{4} e + 504 \, a^{2} b d^{3} e^{2} - 210 \, a^{3} d^{2} e^{3} - 5 \,{\left (b^{3} d e^{4} - 27 \, a b^{2} e^{5}\right )} x^{4} +{\left (8 \, b^{3} d^{2} e^{3} - 27 \, a b^{2} d e^{4} + 189 \, a^{2} b e^{5}\right )} x^{3} -{\left (16 \, b^{3} d^{3} e^{2} - 54 \, a b^{2} d^{2} e^{3} + 63 \, a^{2} b d e^{4} - 105 \, a^{3} e^{5}\right )} x^{2} +{\left (64 \, b^{3} d^{4} e - 216 \, a b^{2} d^{3} e^{2} + 252 \, a^{2} b d^{2} e^{3} - 105 \, a^{3} d e^{4}\right )} x\right )} b}{315 \, \sqrt{e x + d} e^{5}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)*(b^2*x^2+2*a*b*x+a^2)^(3/2)/(e*x+d)^(1/2),x, algorithm="maxima")

[Out]

2/35*(5*b^3*e^4*x^4 - 16*b^3*d^4 + 56*a*b^2*d^3*e - 70*a^2*b*d^2*e^2 + 35*a^3*d*e^3 - (b^3*d*e^3 - 21*a*b^2*e^
4)*x^3 + (2*b^3*d^2*e^2 - 7*a*b^2*d*e^3 + 35*a^2*b*e^4)*x^2 - (8*b^3*d^3*e - 28*a*b^2*d^2*e^2 + 35*a^2*b*d*e^3
 - 35*a^3*e^4)*x)*a/(sqrt(e*x + d)*e^4) + 2/315*(35*b^3*e^5*x^5 + 128*b^3*d^5 - 432*a*b^2*d^4*e + 504*a^2*b*d^
3*e^2 - 210*a^3*d^2*e^3 - 5*(b^3*d*e^4 - 27*a*b^2*e^5)*x^4 + (8*b^3*d^2*e^3 - 27*a*b^2*d*e^4 + 189*a^2*b*e^5)*
x^3 - (16*b^3*d^3*e^2 - 54*a*b^2*d^2*e^3 + 63*a^2*b*d*e^4 - 105*a^3*e^5)*x^2 + (64*b^3*d^4*e - 216*a*b^2*d^3*e
^2 + 252*a^2*b*d^2*e^3 - 105*a^3*d*e^4)*x)*b/(sqrt(e*x + d)*e^5)

________________________________________________________________________________________

Fricas [A]  time = 1.01098, size = 405, normalized size = 1.55 \begin{align*} \frac{2 \,{\left (35 \, b^{4} e^{4} x^{4} + 128 \, b^{4} d^{4} - 576 \, a b^{3} d^{3} e + 1008 \, a^{2} b^{2} d^{2} e^{2} - 840 \, a^{3} b d e^{3} + 315 \, a^{4} e^{4} - 20 \,{\left (2 \, b^{4} d e^{3} - 9 \, a b^{3} e^{4}\right )} x^{3} + 6 \,{\left (8 \, b^{4} d^{2} e^{2} - 36 \, a b^{3} d e^{3} + 63 \, a^{2} b^{2} e^{4}\right )} x^{2} - 4 \,{\left (16 \, b^{4} d^{3} e - 72 \, a b^{3} d^{2} e^{2} + 126 \, a^{2} b^{2} d e^{3} - 105 \, a^{3} b e^{4}\right )} x\right )} \sqrt{e x + d}}{315 \, e^{5}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)*(b^2*x^2+2*a*b*x+a^2)^(3/2)/(e*x+d)^(1/2),x, algorithm="fricas")

[Out]

2/315*(35*b^4*e^4*x^4 + 128*b^4*d^4 - 576*a*b^3*d^3*e + 1008*a^2*b^2*d^2*e^2 - 840*a^3*b*d*e^3 + 315*a^4*e^4 -
 20*(2*b^4*d*e^3 - 9*a*b^3*e^4)*x^3 + 6*(8*b^4*d^2*e^2 - 36*a*b^3*d*e^3 + 63*a^2*b^2*e^4)*x^2 - 4*(16*b^4*d^3*
e - 72*a*b^3*d^2*e^2 + 126*a^2*b^2*d*e^3 - 105*a^3*b*e^4)*x)*sqrt(e*x + d)/e^5

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)*(b**2*x**2+2*a*b*x+a**2)**(3/2)/(e*x+d)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.2053, size = 329, normalized size = 1.26 \begin{align*} \frac{2}{315} \,{\left (420 \,{\left ({\left (x e + d\right )}^{\frac{3}{2}} - 3 \, \sqrt{x e + d} d\right )} a^{3} b e^{\left (-1\right )} \mathrm{sgn}\left (b x + a\right ) + 126 \,{\left (3 \,{\left (x e + d\right )}^{\frac{5}{2}} - 10 \,{\left (x e + d\right )}^{\frac{3}{2}} d + 15 \, \sqrt{x e + d} d^{2}\right )} a^{2} b^{2} e^{\left (-2\right )} \mathrm{sgn}\left (b x + a\right ) + 36 \,{\left (5 \,{\left (x e + d\right )}^{\frac{7}{2}} - 21 \,{\left (x e + d\right )}^{\frac{5}{2}} d + 35 \,{\left (x e + d\right )}^{\frac{3}{2}} d^{2} - 35 \, \sqrt{x e + d} d^{3}\right )} a b^{3} e^{\left (-3\right )} \mathrm{sgn}\left (b x + a\right ) +{\left (35 \,{\left (x e + d\right )}^{\frac{9}{2}} - 180 \,{\left (x e + d\right )}^{\frac{7}{2}} d + 378 \,{\left (x e + d\right )}^{\frac{5}{2}} d^{2} - 420 \,{\left (x e + d\right )}^{\frac{3}{2}} d^{3} + 315 \, \sqrt{x e + d} d^{4}\right )} b^{4} e^{\left (-4\right )} \mathrm{sgn}\left (b x + a\right ) + 315 \, \sqrt{x e + d} a^{4} \mathrm{sgn}\left (b x + a\right )\right )} e^{\left (-1\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)*(b^2*x^2+2*a*b*x+a^2)^(3/2)/(e*x+d)^(1/2),x, algorithm="giac")

[Out]

2/315*(420*((x*e + d)^(3/2) - 3*sqrt(x*e + d)*d)*a^3*b*e^(-1)*sgn(b*x + a) + 126*(3*(x*e + d)^(5/2) - 10*(x*e
+ d)^(3/2)*d + 15*sqrt(x*e + d)*d^2)*a^2*b^2*e^(-2)*sgn(b*x + a) + 36*(5*(x*e + d)^(7/2) - 21*(x*e + d)^(5/2)*
d + 35*(x*e + d)^(3/2)*d^2 - 35*sqrt(x*e + d)*d^3)*a*b^3*e^(-3)*sgn(b*x + a) + (35*(x*e + d)^(9/2) - 180*(x*e
+ d)^(7/2)*d + 378*(x*e + d)^(5/2)*d^2 - 420*(x*e + d)^(3/2)*d^3 + 315*sqrt(x*e + d)*d^4)*b^4*e^(-4)*sgn(b*x +
 a) + 315*sqrt(x*e + d)*a^4*sgn(b*x + a))*e^(-1)